a2 United States Patent

Sankaran et al.

US009448776B1

US 9,448,776 B1
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(60)

(1)

(52)

(58)

METHOD AND APPARATUS FOR
CONVERTING A WEBSITE INTO A NATIVE
MOBILE APPLICATION

Applicant: AppNotch LLC, St. Louis, MO (US)

Inventors: Lakshmanan Sankaran, St. Louis, MO
(US); Russell Lee Bockhorst, Troy,
MO (US); Ken Spear Adriano, St.

Ann, MO (US)

Assignee: APPNOTCH LLC, St. Louis, MO
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/990,703

Filed: Jan. 7, 2016

Related U.S. Application Data

Provisional application No. 62/101,337, filed on Jan.
8, 2015.

Int. CL.

GO6F 15/16 (2006.01)

GO6F 17/28 (2006.01)

GO6F 9/45 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 8/41 (2013.01); GO6F 17/30893

(2013.01)

Field of Classification Search
CPC ..o GOGF 17/30905; GOGF 17/2247,
GOGF 17/30893; GOGF 9/45516; GOGF
9/44526; GOGF 8/41; GOGF 17/289; HO4L
67/02
See application file for complete search history.

Website
(114)

(56) References Cited

U.S. PATENT DOCUMENTS

6,779,042 Bl 8/2004 Kloba et al.
7,200,809 Bl 4/2007 Paul et al.
7,509,649 B2 3/2009 Shenfield
7,548,915 B2 6/2009 Ramer et al.
7,721,278 B2* 5/2010 Alam GOGF 9/44521
717/131
7,797,432 B2* 9/2010 Volodarsky HO4L 67/14
707/999.107
7,840,647 B2 11/2010 Kloba et al.
7,899,847 B2 3/2011 Lau et al.
7,937,261 B2* 5/2011 Wangcccooeuenne. GO6F 17/289
704/2
7,966,408 B2 6/2011 Schramm et al.
7,987,420 Bl 7/2011 Kloba et al.
8,073,895 B2 12/2011 Hamgzeh et al.
8,412,767 B2 4/2013 Ho et al.
8,595,186 B1 11/2013 Mandyam et al.
8,615,712 B2 12/2013 Porter et al.
8,635,522 B2 1/2014 Lee et al.
8,656,353 B2 2/2014 Brendza et al.
8,788,935 Bl 7/2014 Hirsch et al.
8,813,028 B2 8/2014 Farooqi
8,832,644 B2 9/2014 Hirsch et al.
8,875,095 B2 10/2014 Hirsch et al.
8,898,629 B2 11/2014 Hirsch et al.

(Continued)
OTHER PUBLICATIONS

Charland et al., Mobile Application Development: Web vs. Native,
Apr. 2011, 9 pages.™
(Continued)

Primary Examiner — Thuy Dao
(74) Attorney, Agent, or Firm — Thompson Coburn LLP;
Benjamin L. Volk, Jr.

(57) ABSTRACT

Disclosed herein are a number of embodiments for effective
and user-friendly tools that are designed to automatically
convert a website into a native app for execution by a mobile
computing device such as an Android device or an iOS
device. Such tools permit website owners to quickly gener-
ate native apps for their websites without the need for any
significant programming efforts by app developers.

30 Claims, 18 Drawing Sheets

Input {110)

Converter {100}

Processor
(102)

Memory {104}

i Conversion Program
! Instrucrions (106)

Native:
App
(112)

Struciures
)

US 9,448,776 B1

Page 2
(56) References Cited 2014/0136945 A1 5/2014 Ligman et al.
2014/0136954 Al 5/2014 Ligman et al.
U.S. PATENT DOCUMENTS 2014/0136955 Al 5/2014 Lee et al.
2014/0143172 Al 5/2014 Richter et al.
8,898,630 B2 11/2014 Hirsch et al. 2014/0143654 Al 52014 Yang et al.
8,918,712 B2 12/2014 Nario et al. 2014/0143656 Al 5/2014 Porter et al.
8,978,006 B2 3/2015 Hirsch et al. 2014/0215446 Al 7/2014 Araya et al.
9,069,759 B2* 6/2015 Shoshan GO6F 17/289 2014/0258816 Al* 9/2014 Xiong GO6F 17/30905
9,146,909 B2* 9/2015 Khorashadi GOGF 17/30905 715/201
9,176,754 B2* 11/2015 Kokkevis GOGF 9/44526 2014/0280743 Al 9/2014 Burckart et al.
2004/0148571 Al 7/2004 Lue 2014/0280770 Al 9/2014 Burckart et al.
2004/0209607 Al 10/2004 Stepanich et al. 2014/0281859 Al 9/2014 Burckart et al.
2009/0044259 A1* 2/2009 Bookman ... HO4L 63/0428 2014/0281863 Al 9/2014 Burckart ot al.
726/5 2014/0281881 Al 9/2014 Burckart et al.
2010/0169761 Al 7/2010 Lee et al. 2014/0281883 Al 9/2014 Burckart et al.
2010/0174974 Al 7/2010 Brisebois et al. 2014/0281884 Al 9/2014 Burckart et al.
2010/0199197 Al 8/2010 Faletski et al. 2014/0281886 Al 9/2014 Hirsch et al.
2010/0281475 Al 11/2010 Jain et al. 2014/0281904 Al 9/2014 Burckart et al.
2011/0083069 Al 4/2011 Paul et al. 2014/0281905 Al 9/2014 Burckart et al.
2011/0287750 Al 11/2011 Watanabe et al. 2014/0281906 Al 9/2014 Burckart et al.
2012/0017146 Al* 1/2012 Travieso ... GO6F 17/2827 2014/0282371 Al 9/2014 Hirsch et al.
715/265 2014/0344837 Al* 11/2014 Sharoni GO6F 9/44526
2012/0047425 Al 2/2012 Ahmed . 719/328
2012/0060087 Al 3/2012 Jame et al. 2014/0351684 Al 11/2014 Smit et al.
2012/0137211 Al 5/2012 Lewontin 2014/0365869 Al 12/2014 Warila et al.
2012/0159310 A1* 6/2012 Changcccoovnerns GOGF 8/40 2015/0012908 Al 1/2015 Faroogqi
715/230 2015/0121193 AL* 4/2015 Beveridge ... GOGF 17/30893
2012/0180073 Al 7/2012 Hung 715/234
2012/0216108 Al 8/2012 Yambal et al. 2015/0212990 Al* 7/2015 Tsengcccoco.. GOG6F 9/4443
2013/0024873 Al* 1/2013 Hillier ...cc.ccoooveernnnnn. GOGF 9/54 715/234
719/313
2013/0036399 Al 2/2013 Anderson OTHER PUBLICATIONS
2013/0152066 Al 6/2013 Fernandez-Ruiz et al. - . .
5013/0152067 Al 6/2013 Fernandes-Ruiz of al. Bya!lk et al., Native-2-native: autorpated cross-platform code syn-
2013/0205196 Al 8/2013 Han et al. thesis from web-based programming resources, Oct. 2015, 10
2013/0212559 Al 8/2013 Lehtimki et al. pages.*
2013/0219429 Al 8/2013 Hirsch et al. David, “Converting Websites into Native Apps using PhoneGap”,
2013/0283305 Al 10/2013 Hirsch et al. HTMLS Mobile Websites, 2012, pp. 173-207, Article 5, Elsevier,
2013/0305218 Al 11/2013 Hirsch et al. Inc.
2013/0311984 A1 11/2013 Kaiwar PhoneGap FAQs retreived from http://phonegap.com/about/faq on
2013/0326333 Al 12/2013 Hashmi Mar. 6, 2015.
2014/0089786 Al 3/2014 Hashmi
2014/0101635 Al 4/2014 Hoffmann * cited by examiner

U.S. Patent

Sep. 20, 2016

Sheet 1 of 18

US 9,448,776 B1

Native

App
(112)

Website
(114)
Converter (100)
Processor
(102)
input (110} " b\
Memory (104)
Conversion Program
Instructions (108)
Data Structures
(108)
Figure 1A
150 Vo E E Wireless I/O
De;\;xgg)(s) s E Processor E . (184)
k ; (152) :
‘ ')
GPS ' 3 Microphone
(158) ¢ ':' i . (166)
E Memory E
Camera o (154) ‘¢~ Speaker
(160) : : (168)
: Native !
E/D Circuit ! ():\?‘2)) :
ircui) '
—>; 1
{162) : ;
b e o o e e I

Figure 1B

\4

U.S. Patent Sep. 20, 2016 Sheet 2 of 18 US 9,448,776 B1

B Ty
y }
¢ ¥
¢ ¥
: :
oot T t
_— o114 ! :
W Nia e e g
i ;
¥
"""" t App Foamdey :
Wb Foondry ! 202 ;

—————— R H [ttaaaaatitates “

P 207 App
TTTTT b e e
s Lgarisd

L Svmriphones J
App Source: ZIP, »
API, URL, APP-
ZIP. Crawler

Figure 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 18 US 9,448,776 B1

§ ¥
Gollecd Welgite LIRE by handie vl (54,
rd N T
. Yes e e .
o Validsde R Falink & w,
S, WL ~. Download
BN e . Assuds 7
e T
Yas §'
¥ N ”
w Platform infarmation
L h gL Marketpiavs
Configure Memg ™ taop Feshires) %

Praviaw & Validals

Ape Branding
202 \J %‘

Send o Agp Foundey
o Bl dlatlve App

Figure 3

1 User's Websile Address {(LRL)

1 A Owosr Emmlt (o

Figure 4: Web Foundry: Fetch Website and App Owner Info.

U.S. Patent Sep. 20, 2016 Sheet 4 of 18 US 9,448,776 B1

Bystom wupdain the processing..

Maxt Stap

Figure 5: web Foundry: Crawl, Relink, Download Assets.

U.S. Patent Sep. 20, 2016 Sheet 5 of 18 US 9,448,776 B1

Figure 7: Web Foundry: Market Place.

U.S. Patent Sep. 20, 2016 Sheet 6 of 18 US 9,448,776 B1

F igur e 8: Web Foundry: App Branding.

F igure 9: Web Foundry: App Store Info.

U.S. Patent Sep. 20, 2016 Sheet 7 of 18 US 9,448,776 B1

Figure 10: Web Foundry: App Preview and Validator.

Figure 11: Web Foundry: App Build.

U.S. Patent Sep. 20, 2016 Sheet 8 of 18 US 9,448,776 B1

| App DwnerMaker

Matform App File

Y mmmm \
™, 12
, ISP !
N
______ . 5
t \aﬂ
} \,
HrRroRRtion e, - S,
oo e o o s T Aggr infe ,
e, Harme, oo, ™,
~~~~~~ ; S, P " .,
1203 0 e — e
O o Uplonhal i L
x i 2

X

fé&& W\.:M imieleln slelele
4;35}3“‘3{*5{ “ o

Srsssinr NocssmmnmnnsinenarorssOb:
<

E AR

Figure 12: Overview of how Web Foundry and App Foundry interconnect.



US 9,448,776 B1

Sheet 9 of 18

Sep. 20, 2016

U.S. Patent

‘uo1sioAu0d dde 2AnEY 03 9)18GoM Paseq (1odeIdg 10 JR[MELD) JasIRd JO MAIAIBAQ €] 9ANSLY

24035 ddy
5 RO BEERIBBY

i

»s

ek ROy
Ay QP LIRSS R

HBsIY




U.S. Patent

Sep. 20, 2016

Sheet 10 of 18

US 9,448,776 B1

Platform App File
{apkd jpa}

i I
1 208 T
- | App Builder 1405 |
------ 1 ST Dornpite Nadve | 11 Shell apn
t 1203 | (1403 1 app tor platform code o
______ 1 ot
App Info H o
Baren
bty Setun bdo and
—————— . s fios =~ = - -
V1202 ! Criafe 3 L _lflgél ?I
st t 1401
< -~ rrmad Bandest Flg |
Agdress i
Fibe Manping
S T T T —— .
1
................. Crotgt :. _1 _4_02_ |
" Asgets
fnpaat ok
Asuets e

1201 !

Figure 14: App Foundry

“appinfos

<appinfos

Figure 15: App Info Example.



U.S. Patent Sep. 20, 2016 Sheet 11 of 18 US 9,448,776 B1

Cument ... ______ e
State Luggapt - - P 1602 i Cuest
Manifest File |1 1601 | wee e | AssetFles L
mwmm»w,:wwwwww ------ & ~ R

S N

e, m i £ N Y

- oot 1 Save Sle . }

H :. 1 608 t it Shanges i
—————— . “~ §

Cratput R , s ________
: 1401 ! Manifest File J

Figure 16: Relinking App Engine.



US 9,448,776 B1

Sheet 12 of 18

Sep. 20, 2016

U.S. Patent

arepdn ewag ddy - 1 uondQ 3 LI Q.u:wm q

L LOLY

KES5e
i AEN

b e e
3 ButumsaR

sunfiuy dely Bumunen

b .W e Aaus woen i

Bunddews
EsE
O} SESIDPY

seuodeRs B0

PHEUGTASS
sHuUBD ON PR

sk/ syongy syepin

{mmwwmaﬁgﬁu ————
v 80LT ¢

FOIADP U0
BIOSEY WHT

I R g
PRENASHL

SR

D




US 9,448,776 B1

Sheet 13 of 18

Sep. 20, 2016

U.S. Patent

depdy) Jewixy ddy - ¢ uondo @ AAnNSIY

o)




U.S. Patent Sep. 20, 2016 Sheet 14 of 18

P -

~

Address tn File input
mapping | ‘ Asset Filex
T—— 1202 :

s §

I3

Genarate Manifest J

.

| 1901 !
L Manifest File Asset Files
“““““ 1 i e
1401 | 1402 |

Agvet Filea

US 9,448,776 B1

Banifast

¥
H
Mo 2 s
Hative
_ Applisation

/ Gashed Sesponse

ineimeinie

Figure 20: Intercepting Modetl - App Content Update




U.S. Patent Sep. 20, 2016 Sheet 15 of 18 US 9,448,776 B1

Intercepting Relinking
________ éintemaﬁ Apg Upidate [
:__Fig__z?_:”‘“‘““‘* M Fig. 17 i

Aop Condeet Update |

I

Figure 21: Native Application and Shell App Code



U.S. Patent

Sep. 20, 2016

Sheet 16 of 18

US 9,448,776 B1

" ; . » . .
Criginal Website Relinked Version
URL: somesite.corypaget.ided Fiier paged bird
<himi> <himie
chyasdn haads
<hifierPage fuiitor <HerPage tutitior
<Hnk rederstdashedr” hraleasistyle oas < rafesiviashieet” hvalis"osniatyie chy >
st prostisisonint s <iaonipte <sesipd srosjsisesint ja> slecints
<theads <fhpads
<dwady> whiy>
<dliy Gl DO “iliy ClEesTHOK>
i Bt
<fixg heaf paged hin"=Page Ziar litr g Brafrpaged M e Page 2far<dis
~fpeg heef="lohdorinagad il > Fage Saigvaii> ~fiag href=oldaripaged mmi™Page 3xjar <>
=g hrefips e googis. comf>Google ias < i o brofrhnedivey gosgis.oom > Googe it <ibs
e L3S
<idiy i
<oty <oy
fhimi> Reittaite
LIRL: somesite.convpage? bimd Fite: pagse? b
<hnbe “Iiessie
sheads “hends
titherPage S<itiier e Pages 2ites
<Hng paeRbeshert hrebiossistyle ree™> ik ref="shaesheet” hrefoaaistyle oaxs
<sori s sdsnriplis M <iseript <Rerip srowtisisoript Ny aisoript>
<o <t
<Ry whirdys
«z hrels avagoriptay Suncii>
<img st limghimaget.png >
i
<Gy iasRE bR
-

i

<Lody>
Sintitied

Figure 22A:

i <ia b («";’fa!de.rlng&&htmt">§*ag}éa T i
<fidiy

Ratizg

“ i

<w hretevasosiphiony, fuoa( >
<Hvg s imgibnage . pag’
i

by THEehox™>

<oy >
itz

<iwas eain"foldasipaged.nimiPage S<ie> it
wfelpeie

Example Website Relinked Asset



U.S. Patent Sep. 20, 2016

Original Website

Sheet 17 of 18 US 9,448,776 B1

Relinked Version

URL: somesite.comiididaerpaged.hirml
Ay
=higndy
<HigrFage Bt
miutyicahent” refs"lossistylo.css™>
oyt S aisaiphjs e sospt
<ifieads
Ay
<z healfoagetivtmi >
wimg sreslimghomagetang™
L3
AV Shass e
A3
<dirag byet spagel Mol >Pags 2<fg><iis
Chin
<>
<cdy>
<ffdmis

Fe: foider/pagel html
b
<t

it >Fge <flle>

<goript s e
AfrpEpi
<hseschy
< hrof=", fuaged btmi>
<img st dimglimaged pagty
e
“ehty Ol b
L g
<Hmag fred” Spaged b Page 2<las i
il
L Hted
“frplys
wfrstend

LUFL: somesite.comiisiseriplis

frtion my_funel}
{
window iosationrel = “Jpagethtmi”

§

Fie: shaipils

funetion oy fmel)

{
¥

winddow lecaticn.hrel = “pagetitmi”;

F igure 22B: Example Website Relinked Asset

<emnifasis

<faldats pathe"p
ghateairie
whasader narmng
<hgnder .. i

ifflelata»

“Fallate pathw"page? bimi® ur="hitp

e A B OT 0TI D48 BTT 4BIT

wienmusiie comipage t himborighmlilids
rinteCraater» 201508367

fstariins

513 dateCraatad>
SRR SO

Haorasiie. comipaged s

<ehateatnevab 2SO 3T 4047 A28 widataReltavads
<tmacder naress"lide” values"Mon, 20 Jof 308 Z308aT GMT &

<hesder ..
<Hfelhate
<Felaty ...
<imanifagt>

Figure 23: Manifest Example



U.S. Patent Sep. 20, 2016 Sheet 18 of 18 US 9,448,776 B1

App Owner

Crealeflindate

Setup PN Form eTRERRASAA
Notification Hub

Raister Davive

e
Pe iy Muh

Relation in DB |

, i
; Zerwd Push N e e ¥
ﬁ Motification Form *1 Bend Nolification

Figure 24: Push Notification.



US 9,448,776 B1

1
METHOD AND APPARATUS FOR
CONVERTING A WEBSITE INTO A NATIVE
MOBILE APPLICATION

CROSS-REFERENCE AND PRIORITY CLAIM
TO RELATED PATENT APPLICATION

This patent application claims priority to U.S. provisional
patent application 62/101,337, entitled “Method and Appa-
ratus for Converting a Website into a Native Mobile Appli-
cation”, filed Jan. 8, 2015, the entire disclosure of which is
incorporated herein by reference.

INTRODUCTION

With the ubiquity of mobile computing devices such as
smart phones and tablet computers, many people use mobile
applications (“apps”, or “mobile apps”) executed by their
mobile computing devices to electronically access informa-
tion and/or services (“content”).

While apps are widespread, much more widespread are
websites. However, given the growth in usage of apps, many
website owners have a desire to make website content
available to users via apps to add an additional channel for
engaging users as well as potentially sell native apps to the
public via App Stores.

Website owners have faced a challenge in this regard
because the creation of an app is technically challenging and
historically has required a website owner to either code new
apps themselves for one or more mobile application plat-
forms or hire a software developer to code such apps. As
used herein, an app refers to a mobile application that is
executed by a mobile computing device. Apps typically vary
as a function of which underlying mobile computing device
platform they execute on. For example, the same function-
ality for an app would be coded differently for execution on
an i0S platform (e.g., an Apple iPhone, iPad, iTouch, etc.)
than on an Android platform (e.g., an Android-compatible
smart phone). The term “native app” (or equivalently,
“native application”, “native mobile app”, or “native mobile
application”) is used herein to refer to a mobile application
program that has been designed and configured for use on a
particular mobile computing device platform. The term
“native app” does not encompass a general browser program
on a mobile computing device that is configured to access
websites (including mobile versions of websites) via a
network such as the Internet.

As a solution to this problem, the inventor discloses
techniques by which a website can be automatically con-
verted into a native app that can be loaded onto a mobile
computing device for execution thereby. Example embodi-
ments for methods, apparatuses, systems, and computer
program products that perform these website-to-native app
conversion techniques are described below.

There are several problems and technical challenges that
example embodiments disclosed herein solve. For example,
app development typically requires custom coding for each
app by a technical person with advanced programming skills
and who has a solid working knowledge of Java, Android
SDK, Apple Xcode and Objective C (or Switt) can develop
an Android and/or 10S app. With example embodiments of
the invention, however, anyone can convert any static web-
site and/or dynamic website built using HTML, CSS, or
other web framework or tools into a native app and host it
in either or both Android and Apple app stores (or a private
app store such that might be available within a company) for
free or paid download.

15

20

40

45

50

55

2

With conventional methods, in order to build a native 10S
app, a developer would need access to an Apple Mac system
and development tools, along with a yearly subscription to
Apple’s 10S developer program. With example embodi-
ments of the invention, however, a person is able to create
a native 10S app without acquiring or having access to a
Mac system and other i0S development tools.

Moreover, after developing a native app in the conven-
tional manner, developers have to spend an additional time
testing their app in different devices and various form-
factors for usability. By contrast, with aspects of example
embodiments of the invention, operating system and form-
factor validation can be pre-built into a native app shell data
structure. The shell data structure detailed below is built and
tested on various devices, OS versions and form-factors.
Additionally, it can overcome the form-factor limitation if
the HTML files are designed to be adaptive or responsive.

Further still, in situations where the content at issue is
static and/or where a mirror website is used as a backup,
some example embodiments of the native app described
herein will still operate if the original website goes down or
is not accessible (e.g., if the mobile computing device lacks
a network connection when using the native app). Currently
there are many website applications, including critical web
applications in use by field operators such as emergency
responders & mobile sales personnel which cannot be
accessed without Internet connectivity via cellular or Wi-Fi
signal. Many of these website applications can be converted
into native apps using example embodiments described
herein for a fraction of the time and expenses related to
custom designing and coding app versions of those appli-
cations using an app programmer (or team of app program-
mers).

As mentioned, the website-to-native app conversion tech-
niques described herein allow anyone to convert any static
or dynamic website into a native app that works on any of
a number of mobile computing device platforms, such as
Android and 108 devices.

According to an example embodiment, the inventors
disclose a method comprising a processor automatically
converting a website into a native app, wherein the auto-
matically converting step comprises (1) the processor gen-
erating a manifest data structure for the website to be
converted, (2) the processor accessing a native app shell data
structure in a memory, and (3) the processor compiling the
native app from the native app shell data structure and the
manifest data structure. The native app shell data structure
can be configured to house the underlying logic for running
the native app, presenting website content via the native app,
navigating among the website content via the native app.
The native app shell data structure may include code that
configures the native app to operate according to a relinking
model or an intercepting model. Furthermore, in a relinking
model, the manifest data structure may take the form of a file
that lists all assets of a website that are locally hosted by the
native app. However, in an intercepting model, the manifest
data structure may initially take the form of merely a
specification of the website to be converted (e.g., a specifi-
cation of the website’s URL). Then, during later use of the
app, such a manifest could be updated to list any website
assets that are intercepted and locally cached by the native
app. Examples of such designs are discussed below.

Further still, the native app shell data structure may be
populated with features that are not available on the website
to be converted. For example, the native app shell data
structure may be configured to provide the native app with
functionality that allows it to provide features such as push



US 9,448,776 B1

3

notifications, content searches, security, multi-lingual sup-
port, GPS-based locator services, camera capabilities and
others.

These and other features and advantages of various
embodiments of the invention will be described in greater
detail below with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an example embodiment of a computer
system that is designed to convert a website into a native
app.

FIG. 1B shows an example embodiment of a mobile
computing device configured for execution of a native app.

FIG. 2 shows an example embodiment of an overview for
website-to-native app conversion.

FIG. 3 shows an example web foundry process flow.

FIGS. 4-11 show example GUIs for guiding a user
through the process of converting a website into a native app
according to an example embodiment.

FIG. 12 shows an example overview of how the web
foundry and app foundry may interconnect with each other
according to an example embodiment.

FIG. 13 shows an example of a crawler/scraper-based
website-to-native app conversion.

FIG. 14 shows an example embodiment for an app
foundry.

FIG. 15 shows an example of app info used for the
conversion process.

FIG. 16 shows an example embodiment for a relinking
app engine.

FIG. 17 shows an example process flow for an app
internal update with a relinking model.

FIG. 18 shows an example process flow for an app
external update with a relinking model.

FIG. 19 shows an example embodiment for an intercept-
ing app engine.

FIG. 20 shows an example process flow for an app content
update with an intercepting model.

FIG. 21 shows an example architecture for a native app
including shell code, manifest and assets.

FIGS. 22A and B show examples of website asset relink-
ing.

FIG. 23 shows an example manifest file.

FIG. 24 shows an example push notification process flow.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

FIG. 1A shows an example embodiment of a system that
is designed to convert a website 114 into a native app 112.
A converter 100 takes the form of a computer system
comprising a processor 102 and a memory 104. The memory
104 can store conversion program instructions 106 and
supporting data structures 108 as described herein. The
processor 102, in response to input 110, executes the con-
version program instructions 106 with the support of data
structures 108 to generate a native app 112 from a specified
website 114. As used herein, a data structure is a physical
manifestation of information organized within a computing
system. Examples of data structures may include data files,
programs, instructions, scripts, records, tables, arrays, trees,
objects, and the like.

The website 114 can be any website accessible over a
network, and it need not be a website that is specially
configured to work with any specific type of app or mobile
computing device operating system platform. For example,

10

15

20

25

30

35

40

45

50

55

60

65

4

the website 114 can be built using HTML, CSS (Style
Sheets), JavaScript, customer plug-ins including third party
script libraries such as jQuery, jQuery Mobile or Angular or
other web programming languages. The website 114 com-
prises a collection of content components (e.g, web pages or
portions thereof that can take the form of HITML files) as
well as a collection of links to the various content compo-
nents. The content components can be static content com-
ponents or dynamic content components. The content com-
ponents of the website and the links of the website can be
referred to as the assets of the website.

The input 110 can take any of a number of forms. For
example, the input 110 can simply be an identification of the
website 114 to be converted, such as a specification of the
uniform resource locator (URL) for the website. In an
example embodiment, the converter computer system 100
can be configured to provide a series of graphical user
interfaces (GUIs) to a user computer for display thereon,
where these GUIs guide the user through the process of
converting a website into a native app. One of these GUIs
may include a data entry field that allows a user to enter the
URL for the website 114 to be converted into the native app
112. The processor, upon execution of the conversion pro-
gram instructions 106, can then access this specified web-
site, crawl it, and extract the information needed to generate
the native app 112, as described in greater detail below. As
another example, the input 110 can be a copy of the website
114 itself. In an example embodiment, a user may compress
the website 114 into a single file (e.g., a zip file) and send the
compressed file to the converter computer system 100 where
it is uncompressed for the converter computer system to gain
access to the website 114. In another example embodiment,
the converter computer system 100 may have an application
programming interface (API) for interfacing with an exter-
nal computer system so that the external computer system
can deliver a copy of the website 114 to the converter
computer system 100. The external computer system would
have a capability to integrate this API into its own system so
that users of the external computer system have easy access
to the converter 100. In this regard, third party website
building/publishing tools/services such as Wix, Square-
space, and/or Weebly would have a capability to provide
their users with access to the converter 100 via an API so that
such users can not only build their own websites but also
automatically convert those websites into native apps as
described herein. Further still, the input 110 may include
metadata for the native app that is to be generated, such as
an app icon to be displayed for the native app on a screen of
a mobile computing device, a name for the native app, and
the like.

The native app 112 can take the form of a plurality of data
structures and instructions that are executable by a processor
of' a mobile computing device to present the website 114 to
a user of the mobile computing device via invocation of the
native app 112. The native app 112 will be configured for
execution by a specific mobile computing device operating
system, such as Android, i0S, BlackBerry, or Windows. The
native app 112 can be stored on a non-transitory computer-
readable storage medium such as computer memory. For
example, a copy of the native app 112 can be stored in a
memory of an app store or the like and be made available for
download into the memory of a mobile computing device for
execution thereby. FIG. 1B shows an example mobile com-
puting device 150 that is configured to execute native app
112. The mobile computing device 150 includes a processor
152 and associated memory 154, where the processor 152
and memory 154 are configured to cooperate to execute the



US 9,448,776 B1

5

native app 112. Furthermore, the mobile computing device
150 may also include one or more /O devices 156 (e.g., a
touchscreen user interface for graphically displaying output
data and receiving input data from a user), a GPS receiver
component 158, a camera 160 capable of capturing video, an
encryption/decryption circuit 162 for encrypting or decrypt-
ing data, wireless I/O 164 for sending and receiving data, a
microphone 166 for capturing sound, and a speaker 168 for
converting sound data into audible sound. The wireless /O
164 may include capabilities for sending and receiving
messages over a network such as a cellular data or WiFi
network as well as making and taking telephone calls. The
wireless /O may also be capable of communicating with
nearby objects via near field communication (NFC), com-
municating with nearby objects via RF, and/or communi-
cating with nearby objects via Bluetooth. As explained
below, the native app 112 may be configured to interface
with these components of a mobile computing device in
order to provide users with increased functionality relative
to the capabilities of the source website 114.

Returning to FIG. 1A, the processor 102 can take the form
of any hardware data processing component that is capable
of performing the website-to-native app conversion opera-
tions as described herein. For example, the processor 102
may take the form of a microprocessor, CPU, or the like that
is capable of executing the conversion program instructions
106. In operation, such a processor 102 can fetch one or
more conversion program instructions 106 from memory
104 over a bus or other interconnect for execution thereby.
It should be understood that the processor 102 may take the
form of multiple processors that cooperate with each other
to implement the website-to-native app conversion opera-
tions as described herein.

The memory 104 can take the form of any memory device
capable of storing data and interacting with the processor
102 as described herein. It should be understood that the
memory 104 may take the form of multiple memory devices.
Together, the processor 102 and memory 104 as described
herein can be characterized as a circuit specially configured
to perform website-to-native app conversion operations as
described herein.

The converter computer system 100 may also include, by
way of example, additional components such as non-volatile
data storage (e.g., a hard disk, etc.) connected to a bus, one
or more network interfaces connected to the bus, through
which the computer system 100 can receive input and or
website content from remote sources via a network, a
display (e.g., a monitor) and input(s) (e.g., a keyboard,
mouse, etc.) for interacting with users.

Example embodiments of the conversion program
instructions 106 and data structures 108 are described below.
Instructions 106 are configured for execution by processor
102 and can be stored on a non-transitory computer-readable
storage medium such as memory 104. Examples of different
embodiments for the conversion program instructions 106
and data structures 108 are described below in connection
with a locally hosted web site embodiment and a link
interception embodiment for the native app 112. With the
locally hosted website embodiment for the native app 112,
the native app 112 is built so that some or all of the website’s
content components are locally hosted by the native app 112
from inception, in which case the native app can function
effectively even if the mobile computing device on which it
executes lacks a network connection. The link hosting
embodiment can be referred to as employing a crawling/
relinking method to build the native app. With the link
interception embodiment for the native app 112, the native

10

15

20

25

30

35

40

45

50

55

60

65

6

app 112 is built so that it accesses the website over a network
connection available to the mobile computing device when
the native app is launched. Website content then gets served
from the remote website while also being cached by the
native app. Subsequent usage of the native app to access the
same web site content may result in the content being served
from the local cache rather than the remote website.

FIG. 2 shows an example embodiment of an overview for
website-to-native app conversion. In the example of FIG. 2,
the conversion program instructions 106 may include a web
foundry 202 and an app foundry 207, where the app foundry
207 may include platform-specific app builders 208 (e.g., an
Android app builder and an iOS app builder). The web
foundry 202 is configured to interact with a website 114
according to an app source method as discussed below to
identify website components and develop a set of website
assets to be included in the native app. The app foundry 207
is configured to build the native app using the website assets
provided by the web foundry 202. The resulting native app
112 can then be provided to a user and/or uploaded to an app
store to be made available to users.

A. Web Foundry

Flow to Convert a Website into a Native App

FIG. 3 shows an overview of the user interface flow for
converting a website in a native app. This example flow has
five primary steps—

1. Collect website and owner data

2. Customize app features

3. Integrate marketplace features

4. App Store meta-data collection

5. Push data to app builder to convert website into a native
app.

Collect Website and App Owner Info

FIG. 4 shows an example GUI through which users are
prompted for their email address and the website address for
the website to be converted into a native app. The Create
button invokes step 1 of Web Foundry to processes the given
URL and sends it to next step, Crawl.

Processing App (Crawl, Relink, Download Assets.)

FIG. 5 shows an example GUI that includes an animated
interface that explains what the system is doing while the
conversion program instructions operate to, for an example
embodiment where crawling is employed, crawl the website
data, relink the assets and files, and download the assets of
the website.

App Features

FIG. 6 shows an example GUI that allow app owners to
add additional features and customize and personalize their
app. For example, features to integrate the native app with
various social media services may be provided.

Marketplace Integration

FIG. 7 shows an example GUI that allows users to select
from an additional list of features that can be incorporated
into the native app. Examples of such additional features
may include Security, Private App, Offline App, Push Noti-
fication, as discussed below.

App Branding

FIG. 8 shows an example GUI that allows users to upload
an app icon and its splash image for the native app as per app
store specifications.

Native App Store Info (Metadata)

FIG. 9 shows an example GUI that allows users to upload
information about their app as per the appropriate app store
specifications. The App Builder will use such metadata when
building the app.



US 9,448,776 B1

7

Preview and Validate

FIG. 10 is an example GUI that shows a simulated
preview of the app, with the ability to rotate and/or set
orientation. Users can also test their push notification and
offline functionality in this mode. The Validate module
verifies if all links are accurately set.

App Build

The system next collates the metadata from the previous
steps and passes it to the app builder. Once the builder and
app engine completes the build, the apps are emailed to the
user with instructions on how to submit to Apple and Google
(see FIG. 11).

A(1): App Sources

The web foundry 202 can accept website content in any
one of a number of formats as discussed above and as
described in more detail below. For example, FIG. 12 shows
an example where any of five techniques can be used to
accept website content to build a native app. Each of the
input methods is detailed below.

App Source: Method 1: Crawler 209

Brief Overview:

A crawler on a server or the app is designed to download
a given website content including HTML, CSS, JavaScript,
images and other assets 1201 that makes up the website,
parse that content and store the content in a local database
in the server or within the app as a set of content component
files. The system then processes 207 each file to relink the
URLs inside it to point to the local file so the content loads
from within the device instead of the external web server.
This allows the website content to be viewed without a
network connection and improve the app’s performance. An
example of a tool that can be used as the crawler is NCrawler
available from ncrawler.codeplex.com.

The illustration in FIG. 13 depicts an example environ-
ment for the Crawler-based app conversion example
embodiment.

Details:

1. Websites

Website 114 is created by a professional by designing and
uploading the files to a web farm. This can be done by the
user creating the files in a desktop editor then transferring
the files to a server (web farm) via file transfer—or by using
a website building/publishing tool service (Examples: Wix,
Squarespace, and Weebly).

2. Web Foundry

a. The web foundry 202 can be made up of multiple logic
components that crawl or scrape the website content
1201, store that content in a database or some other
storage medium. Other logic components of the web
foundry can collect and validate app metadata 1203,
including app name, description, icons, and other assets
used to build the app by the App Foundry 207.

b. The process combined with a web service to transfer the
assets to the App Foundry 207 to create the app.

3. App Foundry

a. The App Foundry 207 may comprise two parts—an app
builder 208 and an app engine 210. The app builder
accepts input from the web foundry, parses the infor-
mation and routes it to a platform-specific app builder
208.

b. The builders 208 can be platform-specific. Each builder
takes an app shell (see FIG. 14, 1405) and injects the
web content inside it to build a platform-specific Native
App. For the locally hosting embodiment, the injected
web content can be a locally hosted version of the

15

20

25

30

35

40

45

50

55

60

65

8

website. For the link intercepting embodiment, the
injected web content can take the form of a specifica-
tion of the target website (e.g., its URL) (and where this
web content grows in a local cache as the native app is
used).

c. The native app 112 is then sent to the user to host in a
public App Store (e.g., Apple’s or Google’s online
stores for obtaining apps) or the system hosts the native
app in a private app store and send the links to the user.

4. App Stores

a. The user can then submit the native app 112 to the App
Stores for approval.

b. Once approved, the apps are then ready to be purchased
from the App Stores.

5. Updates

a. In an example embodiment, the app 112 when invoked
can be configured to check for updates from the live
website when it is in use. This process can be made
easy by allowing the app to communicate directly to a
web service (examples for such updates are discussed
below).

6. Refresh

a. When checking for updates, the web service pings the
website crawler or scraper (SQL database) (cont. to
step 6b).

b. If the crawler or scraper finds new information, it
scrapes the new content from website and updates the
database and notifies the web service.

c. The web service then sends the updates to the mobile
device running the app.

App Source: Method 2: Interception 205

Brief Overview

The web foundry 202, in an example embodiment, builds
a platform-specific native shell app (see FIG. 14, 1405) with
no pre-built content of the website beyond a capability to
access and present a specified website for display. The native
app, when invoked, loads the website 114 to display and
intercepts the network calls to cache responses. If network
connectivity is not available and if the previously cached
objects are present, the cached responses are used to fulfill
the requests to display the website.

Details

An example embodiment for the Interception-based web-
site-to-native app conversion comprises a user (app owner)
entering website address (URL) along with metadata about
the app 1203 used to build the native application such as its
icon, name, etc. that they want to convert into an native
application.

This information is validated and then given to a proces-
sor or packager for each mobile platform desired. This
process then uses the information to build a native applica-
tion for the given website (URL). Once finished, the appli-
cation is sent back to the website owner or submitted to the
appropriate store (e.g. Apple App Store or Google Play or
Private App Store) for distribution.

App Source: Method 3—AppPackage 206

Brief Overview

A special custom platform-specific native application is
used to browse a website 114, intercepting the network calls
and caching the responses similar to the Interception method
detailed above and below. The cached responses are then
uploaded to the web foundry 202 along with app metadata
including icons, description, images and other information
used to build the app. Both these information sets are
packaged and sent to app foundry 207 to build the platform-
specific native application. Updates to that application could
also be done using the same special application for initial



US 9,448,776 B1

9

creation. These processes would may involve uploading the
cached responses to a server for the building of the appli-
cation.

Details

An example embodiment for the AppPackage-based web-
site-to-native app conversion comprises of using a special
native application to browse a website 114 and then using
the cache from browsing to create the final application.

A special native application is used to browse a target
website 114. In a fashion similar to the Interception method,
the requests for resources needed to display the website are
recorded and saved into a cache. Once the website has been
browsed enough to have a sufficient portion of the needed
assets 1201 for display of the website, the application can
upload its cache to a server to have the final application built.

This server receives the cached files 1201 from the special
application and combines this with other necessary app
metadata 1203 used to compile a native application. The
final native application is then built with the assets needed
for displaying the target website.

The final native application when launched will display
the website 114 using the assets 1201 captured by the
original special application. It could also make requests
directly to the website 114 and even update the cache similar
to the Interception method.

Another way to update the content is to use the special
application to browse/update the cache for the website 114
and upload the new content to the server to build a new
updated version of the final application.

App Source: Method 4—ZIP 203

Brief Overview

The user zips the content of the website 114 and uploads
the zipped content to the web foundry 202 along with app
metadata 1203 including icon, name, version and other
information used to build the platform-specific native app
with content from the zip file. The native app can be
designed and built to exhibit behavior the same as or similar
to the native app built using the Crawler or Interception or
AppPackage models.

Details

An example embodiment for the Zip-based website-to-
native app conversion comprises a user uploading the con-
tents of the website 114 in a compressed Zip format to the
web foundry 202. The compressed file can contain app
metadata 1203 including icon, name, version and other
information used to build the platform-specific native app

The web foundry 202 decompresses the files and splits the
website content 1201 from app metadata 1203 and sends it
to the app foundry 207 to build the platform-specific native
app for displaying the target website 114.

The native application when launched will display the
website using the assets 1201 captured by the original zip
file provided by the user. It could also make requests directly
to the website 114 and even update the cache similar to the
Interception method.

App Source: Method 5—API 204

Brief Overview

The user makes a request from their website to an API
(application programming interface) service passing in the
URL of the website 114 and along with app metadata 1203
including icon, name, version and other information used to
build the platform-specific native app along with security
keys to uniquely identify the source. The web foundry 202
then parses the information and calls the app foundry 207 to
build the platform-specific native app. When the process is
complete, the app foundry can email the app or link to the
app to the user for distribution.

10

15

20

25

30

35

40

45

50

55

60

65

10

Details

An example embodiment for the API-based website-to-
native app conversion comprises a user calling a set of API
calls over the network from their website passing in the
address for website 114, assets 1201 and other information
used to build the platform-specific native app. To ensure
security, each caller may pass-in a pre-assigned security key
to uniquely identify their website and ownership.

The web foundry 202 verifies the data along with security
key to ensure identity matches and sends the info to app
foundry 207 to build the platform-specific native app for
displaying the target website 114.

The native app can be designed and built to exhibit
behavior the same as or similar to the native app built using
the Crawler or Interception or AppPackage models.

B. App Foundry

With reference to FIGS. 13 and 14, the App Foundry 207
may comprise two parts: the App Builder 208 and the App
Engine 1301. The App Engine 1301, its produced manifest
(see FIG. 14, 1401) and output assets (see FIG. 14, 1402),
and Shell app code (see FIG. 14, 1405) can be designed to
vary slightly between the Crawling/Relinking and Intercep-
tion models, and of course the resulting platform-specific
native app file 112 would differ because of the differing code
used to compile. The App Builder 208 would likely not need
to change as a function of the target platform if desired by
a practitioner.

In an example embodiment, the App Builder 208, its
subcomponents 1403, the Shell App code 1405, and the App
Info 1203 would vary depending on the platform (e.g.
Android, i0S) which would also cause the produced plat-
form-specific native app file 112 to vary as well. Other
portions of the foundry 207 would not likely be required to
change because of the platform if desired by a practitioner.

The App Foundry 207 receives platform-specific and
app-specific data, App Info 1203, the input assets 1201 and
associated file mapping 1202; the latter two are sent to the
App Engine 1301. The produced manifest file 1401 and
output assets 1402 along with the App Info 1203 are then
sent to one or more platform-specific App Builders 208
which use the appropriate shell code 1405 for the platform
and model (Relinking or Interception) to produce the final
platform-specific native app file(s) 112.

The input assets 1201 and file mapping 1202 may be
empty or not given to the foundry 207. In this case, accord-
ing to an example embodiment such as in an interception
model embodiment, the only source of input can be the App
Info 1203 as well as a specification of the website 114 (e.g.,
the URL for website 114). With no input for the App Engine
1301 it is effectively skipped and the App Builder 208 would
only be given the App Info (1203) and website URL (which
would serve as the manifest data structure) and use the
appropriate Shell code 1405 for the interception model to
produce the final platform-specific native app file(s) 112.

App Info

The App Info 1203 given to the App Foundry 207 can
include information used to build/compile the application
112 such as the name, version, icon, unique identifier. An
example of such app info is provided in FIG. 15. In this
example, the app info 1203 is in an XML format, but it
should be understood that other formats for storing and
transferring the information could be used such as JSON.

App Builder

The App Builder component 208 is responsible for the
actual compilation of the application, and would be specific
to the platform being compiled (e.g. Android, iOS). The
builder 208 (possibly) receives the processed/output assets



US 9,448,776 B1

11

1402 and manifest 1401 of the target website 114. It uses
platform-specific and app-specific information, App Info
1203 (such as the app’s name, icon, version), and a platform-
specific identifier (e.g. iOS Bundle Identifier). This infor-
mation could come from the same source as the input assets
1201 or from another location (likely another website’s form
input).

This information is then used to setup a project 1404 such
that it can be compiled 1403 with the appropriate Shell App
code 1405. In an example embodiment, this setup process
can vary for each platform such as the location where the
packaged files 1401, 1402 are placed as well as the structure
used to contain the metadata for the application (such as the
name, version, and unique identifier). For example, Android-
packaged resources would typically be placed in an ‘assets’
folder and the metadata in the ‘AndroidManifest.xml’ file. In
contrast, 10S-packaged resources are typically in the top
level folder of the project and referenced in the project file,
while the metadata is stored in an ‘Info.plist’ file. While the
‘ AndroidManifest.xml’ and ‘Info.plist’ files are typically in
XML, the element and attribute names are vastly different.

The compilation step 1403 would typically use the stan-
dard compiler/tools for the platform, such as ‘xcodebuild’
for 10S or ‘ant’ (and related Java compilers) for Android.
While these compilers have similarities they typically can-
not take code written in a different language or for another
platform, thus the compiler used is typically dependent on
the platform being built.

The compilation process typically produces a single plat-
form app file 112 (such as a .apk for Android, or .ipa for
i08). This file serves as the converted website application.
This could then be used to install directly onto a device, or
publish to an app store (e.g. Google Play, Apple App Store).

App Engine

As discussed above, the app engine according to example
embodiments may be designed to employ either of two
models—a relinking model and an intercepting model.

1. The Relinking model involves analyzing the content of
the website and adjusting links (URLs) to load from the
app’s storage instead of directly from the website.

2. The Intercepting model instead captures the requests
made to display the website and will replace them with
responses in its cache, or update its cache if needed. It
will also use these cached responses if the device loses
its network connection.

Both variants of the engine may receive input asset files
1201 as well as a mapping 1202 of the addresses where the
input asset files are retrieved and output a manifest 1401
(mapping a filename or path with the original address) as
well as output asset files 1402 which are either very similar
to the input asset files or in the case of the intercepting
engine exactly the same. However, in some embodiments of
the intercepting model, the engine may not need to start with
any input asset file as the app according to the intercepting
model may merely start with the website URL, as discussed
below.

Other information is likely to be present in the manifest
file 1401 such as the starting address/page to use when the
app launches, the time the files were processed, and other
metadata about the content of each file, etc. In the event a
practitioner omits this extra information from the manifest
1401, it would still likely be desirable to package such
additional information with the application 112 in some
manner for efficient operation.

App Engine Architecture—Relinking Model:

FIG. 16 shows an example architecture and process flow
for a relinking app engine 1301. The relinking app engine

30

40

45

65

12

1301 model takes input asset files 1201 (from one of the
above methods or from updating described below) along
with a mapping 1202 associating the files with their original
address (URL).

A final Address to File mapping 1609 is created from
merging and removing mappings 1604. Then each file from
the input assets 1201 is processed 1605. Depending on the
type of file, a different parser 1606 is used; for example
HTML, CSS, and Javascript. Other parsers could be used as
well, and would be necessary if another file type needs to be
processed. Using the parser, links are found and each one is
checked to see if it exists in the mapping 1609. If the link
does exist, it is then adjusted/relinked 1607 to the local file
instead of the website. Once all of the links for a file have
been adjusted, it is saved 1608 to the output asset files 1402.
Not all files need to be processed or parsed, such as images
since they do not contain any links to other resources; these
files would be left unaltered and saved in the output asset
files 1402.

The address to file mapping 1609 is saved 1610 to make
the final manifest file 1401 containing the mapping used and
like metadata on each file such as HTTP headers, or meta-
data on the website or state of the application. This process
could be performed before, during or after the processing of
files 1605.

If the engine is updating existing assets, then the current
manifest 1601 and current files 1602 are available as well as
possibly a list of removed assets 1603. Before making the
final Address to File mapping 1609 merging of the input
mapping 1202 and the mapping present in the current
manifest 1601 would take place. This merging 1604 would
include adding entries in the input mapping 1202 that are not
in the current manifest 1601, and updating the file path
and/or metadata for entries present in both (and possibly
deleting the old version of the file). If a list of removed
resources 1603 is provided, these listed resources are then
removed from the mapping (the associated file may also be
deleted at this point or in the future). After these steps the
final address to file mapping 1609 is formed. Also while
updating the current asset files 1602 are also processed 1605
with the input assets 1201 in order to relink any new,
updated, or deleted assets.

Relinking Model—App Content Update:

If desired by a practitioner, the native app 112 can be
designed to check for updates to website 114 and then update
itself accordingly. With such embodiments, the app content
can be updated according to either of two different methods
with the Relinking model, as shown by FIG. 17 (app internal
update) and FIG. 18 (app external update).

Both update methods perform a check 1701, 1801 to see
if any new or updated website content is available. These
checks can be triggered by in several ways, such as the
application 112 launching, periodically based on time, or
externally by an API or webservice call (typically from the
website owner).

If checking reveals that an update is available, the app
user can be asked 1802 if they wish to update (as the process
takes time and network resources, a user may or may not
want to perform the update). The update process ensures the
application 112 has the latest content for the website 114
available to it.

Option 1
App Internal Update

In this option, as shown by FIG. 17, the application
processes 1702 each entry in the manifest 1401, 1601 and



US 9,448,776 B1

13

makes a request to the original server 1703 for the resource
(e.g. using the HTTP HEAD method) and determines if
received response is different/new 1704 from the one cur-
rently stored on the device. Each one determined to be
different or new is added to a list 1705. Once all the entries
in the manifest have been processed and there is at least one
entry in the list 1706 (i.e. at least one resource has changed
or updated) and update is determined to be available.

The actual update process begins and a full request 1708
(e.g. HTTP GET) for each resource 1707 in the list is made
and the full response is then retrieved and placed into the
New Input assets 1201 and its address (URL) and metadata
are added to a mapping 1202. The Relinking App Engine
(see FIG. 16) is then used to update the current assets 1402,
1602 and manifest 1401, 1601. Some resources may have
been removed from the server (e.g. HITP 404 status code),
in which case the associated file is removed by adding it to
a list of removed mappings 1603. Each of the resources
1401, 1402, 1601, 1602 are processed and then saved to the
device completing the update process.

Option 2
App External Update

FIG. 18 shows an example process flow for an app
external update. Similar to Option 1 (FIG. 17), the files 1705
are instead processed in the App Engine (see FIG. 16) on a
server (not necessarily the website host). Advantages to this
over option 1 typically include faster fetching of resources
(as compared to the mobile device) and processing them
faster (servers typically have more computing capability).
This option also allows for refinement of the relinking
process without needing to recompile the application and
possibly submitting to that platform’s store.

In this scenario, the app 112 checks if an update is
available from this server 1801. If updates are available it
may prompt the user 1802 if they wish to update as the
process may take time to complete. Checking for updates
would involve storing a unique sequence (e.g. timestamp or
hash) of when all of the assets were last updated (or initially
created) and comparing it to what the server has. When an
update happens 1803, the server is contacted again 1804 for
a list of files that each have a unique sequence (e.g. time-
stamp or hash). This list is compared with the application’s
manifest 1401. For each entry there are 3 possibilities:

1. New Resource—entry exists in server’s list but not in

the application’s manifest

2. Updated Resource—entry has a different unique

sequence between the server and application

3. Removed Resource—entry exists in the application’s

list but not in the server’s manifest

New and updated resources are downloaded 1805, 1806
from the server; since the Relinking process (FIG. 16) was
done there, the device does not need to alter or adjust them.
Then removed resources are deleted 1807 from the appli-
cation 112, and finally the manifest file 1401 is updated to
match the server including the unique sequence indicating
when the last update occurred.

In this option, updates would only occur when the server
(not necessarily the website host) is triggered to perform the
relinking process on the website. Possible triggers include
periodic (e.g. hourly or daily), or a webservice or API call
from the website when it changes (or wants to publish such
changes). This is in contrast to option 1 (FIG. 17) where the
trigger is from the user of the application.

10

15

20

25

30

35

40

45

50

55

60

65

14

App Engine Architecture—Intercepting Model:

In the interception model, the App Engine 1301 is much
simpler. FIG. 19 shows an example embodiment of an
intercepting app engine 1301. The input assets 1201 are
typically unchanged and passed directly as the output assets
1402. Only the manifest file 1401 would need to be gener-
ated 1901 from the mapping of the input files 1202. The
process would involve serializing the mapping 1202 into the
desired format and possibly adding any additional metadata.

The built application 112 when launched will load the
specified website (URL) entered by the owner. While the
application 112 is loading any web page, image, script, or
other asset, the request 2002 is intercepted, allowing the
application 112 to examine the request and give its own
response 2008 instead of going to a server.

When a request is intercepted, the application determines
2003 if a cache entry exists in the manifest 1401. If a
requested entry exists in the cache and is considered ‘fresh’
2005 according to predetermined criteria (e.g. by the HTTP
Caching standards), the cached file from the assets 1402 is
served instead of making a network request. However if a
‘stale’ (not ‘fresh’) response is found and no network
connectivity (2004) is available, the cached file could still be
used.

If an entry does not exist for the request (or it is stale but
a connection exists), then the website asset is fetched 2006
by normal means and the response and its content are added
to the cache by updating the manifest 1401 and assets 1402
so that it can be used for this and later requests. Not all
responses need be cached (nor should they), such as HTTP
POST submissions.

The need to update the application 112 is minimal, and
really occurs automatically as a user browses the website.
However, updating a cached response is possible by having
the application 112 forcibly make a network request for it
and replacing or updating it with the network response in the
manifest 1401 and assets 1402. This could be done, for
example, on all cached responses or on responses that are
considered ‘stale.’

C. Shell App

The native app shell data structure can take the form of
shell application code 1405. The shell code can include the
basic logic for displaying the native app on the mobile
computing device and interfacing with the mobile comput-
ing device’s native controls and provides a simple user
interface for browsing the website content from within the
app and navigating that content from within the app. In an
example embodiment, the shell code 1405 can also contain
the logic for performing the App Content Update (see FIG.
17, FIG. 18, FIG. 20) of the App Engine 1301. The shell
code 1405 can be configured to use the manifest 1401 and
assets 1402 to display the converted website and behave
appropriately.

In the relinking model, the Output Assets 1402 are modi-
fied versions of the Input Assets 1201, and in many cases the
differences in the links are subtle, such as removing leading
‘/” characters to make them relative instead of absolute. The
modified files 1402 are then loaded from local device
storage to be displayed in the platform’s native control,
typically through use of the file:// protocol. Changing abso-
lute links is done in the link remapping to prevent the files
from trying to access the root directory of the device which
an application normally does not have access to.

FIGS. 22A and B show examples of site and relinking
outputs. When the original input asset (from the website)
already has a relative link, it is normally not altered (ex: FIG.
22A in pagel.html the link to page2.html is relative and not
changed in the Relinked version). However, the naming



US 9,448,776 B1

15

scheme and hierarchy of the output assets does not have to
match that of the input assets or the website. In this case all
links that point to another asset would have to be changed to
match the naming scheme used.

FIG. 23 shows an example manifest file 1401 for a
relinking embodiment. The manifest file 1401 would pri-
marily contain a mapping that associates the original address
(URL) of the asset to the path of the local file that holds the
corresponding output asset in addition to any metadata for
the asset such as HTTP headers. Other information about the
converted website would likely be present such as the
original address (URL) that was converted, the date the
manifest was created (or updated). While the example given
here is in XML format, it should be understood that other file
formats or data structures could be used such as a relational
database.

The shell code 1405 for the interception model contains
the logic outlined in the interception App Content Update
(FIG. 20), a manifest 1401, and optionally prepackaged
assets 1402. The manifest data structure 1401 in such an
embodiment may simply be a specification of the URL for
the website 114. However, as the intercepting native app 112
is later used, this manifest 1401 may grow to list the locally
cached website assets. Also, the shell code 1405 for the
interception model may initially not have an input assets,
although these input assets can be built during app use as the
app locally caches the website contents that are accessed.

Unlike the caching mechanisms of a typical browser, the
shell app code for the intercepting model is designed to be
aggressive in how it caches responses and override or ignore
any pre-existing cache control configuration data that may
be included within the website assets. For example, the
cache logic of the shell code 1405 can be configured to cache
HTTP responses even if those responses have headers stat-
ing they should not be cached. In these scenarios the cached
response can be considered ‘stale’ within the app, and will
always be fetched from server if connectivity exists. How-
ever, if connectivity does not exist, the application 112 will
serve these ‘stale’ responses from the local cache, thereby
providing the user with content even if connectivity is lost.

A conventional browser caching mechanism typically
cannot be pre-populated with cached responses. Browsers
will also typically not display a website page from cache if
connectivity is lost, especially if the response is marked as
not cacheable. Many websites will mark their main pages as
not cacheable so that any updates are always fetched. The
caching model of the intercepting app 112, however, allow
a user to still browse the website 114 as they last saw it
without any connectivity. Also, if assets 1402 are pre-
packaged into the application 112, they can browse that
version without having any connectivity the first time the
application 112 is opened.

Shell App Platform Differences

This section outlines some of the differences in the Shell
App code 1405 between Android and iOS. Other differences
would be present for other platforms such as Windows and
Blackberry.

Determining connectivity 2004 for Android devices is
performed much differently than for iOS devices. Android
has a component called a Broadcast Receiver that can be
notified when changes to network connectivity occur,
including when it is lost, switching to or from WiFi, etc.
Such a receiver is set up to monitor changes and keep a flag
(boolean) updated when an internet connection is available
or not.

For 108, determining connectivity 2004 to the internet is
not as straightforward. Instead network requests are always

10

15

20

25

30

35

40

45

50

55

60

65

16

attempted and fall back to code handling non-connectivity if
a timeout or other error indicating a loss of connection.

In the interception model, the actual mechanism of inter-
cepting requests 2002 differs greatly as between an Android
interception model and an iOS interception model. For
Android, the native WebView control used to display the
content allows for application code to give responses to
resource requests of the control. Returning a null value will
have the control perform the request normally over the
network.

Interception on iOS involves the application registering a
URL Protocol handler. This handler does not receive
requests 2002 for just the native control display the website,
but all network requests done by other parts of the applica-
tion 112. Because of this, requesting the resource from the
server 2006 to update the cache requires flagging said
request so that it is not intercepted 2002 over and over. The
application code for this handler is also not typically on the
same thread of execution as the rest of the application, which
causes concurrency issues with accessing and changing the
same memory.

D. Marketplace Integrations

Additional features that can be included in the Website-
to-Native App Conversion Process flow include integrating
one or more marketplace features into the native app.
Examples of options in this regard are described below.
When such feature integrations are desired, code for imple-
menting such additional features can be added to the shell
app code 1405 so that the features can be executed by native
app 112.

1. Security

Brief Overview

A website may or may not have security layer added to it.
A typical security layer is a authentication security scheme.
When the website is converted to an app, the current
architecture can support the login authentication built into
the website dynamically. By adding extra layer of security
on top of the website’s authentication security scheme, it
adds an extra layer of protection to protect the data the app
has stored in the local device.

Details

An example embodiment for this can include a two-step
approach to adding the extra layer of protection on top of the
already existing authentication.

Example: An insurance website that was converted to an
app collects user data from a form. During app usage,
connectivity is lost while data has been entered into the form
via the app (in which case such data can be kept in local
storage on the device). And at a later time when device
re-establishes connectivity, the same data can be posted back
to the server. During this transition time, absent additional
security, there is a risk that if the device is lost or stolen, a
person who finds or steals the device can read the data. By
adding an extra layer of app level security, the data that is
stored in the device will be in encrypted format and will be
deemed unreadable. At the same time, when connection is
reestablished, the app will post the data to the server in an
unencrypted format but over a SSL layer.

Another example can be a case where a web-based chat
application with no security cannot be used by a hospital
staff due to HIPAA rules. The same web-based chat con-
verted into an app and with the added app level security
instantly becomes a HIPAA compliant app.

During the app build process, an app owner can choose to
add extra security by configuring few additional steps (see
the example GUIs described above). The Ul process is



US 9,448,776 B1

17

extremely easy and intuitive that allows any non-technical
person to add the industry standard security their app.

2. Private App Store

Brief Overview

By building an app that is deemed private (Example: a
company wanting to convert their Human Resource website
to track employee benefits into a native app will not serve
any value if the app is hosted on the public app store, but it
would be served well if it is built as a private app and hosted
in a company-managed internal infrastructure.

Details

An example embodiment for this can include a one-click
process for the app owner to choose to build, configure and
send their completed app to a private app store and avoid the
14 days wait time to get their app published to an app store.
The integrated process of this example embodiment takes
minutes to build a private app with all features of the website
and be ready to install on a device.

3. Push Notification

Brief Overview

Push Notifications are great tools for communication, but
are not generally supported by websites. FIG. 24 shows an
example process flow that can be used for the native apps
112 to support a push notification service.

Details

An example embodiment for this can include a one-click
process the app owner can choose to configure and build
their app 112 with Push notification enabled in it. The
integrated process of this example embodiment takes min-
utes to build the app with Push Notification and avoid all the
additional steps. The Push feature can be extended to
support Group Push, Tagging based push, one-on-one push
to target a specific user as well as users in certain geo
location.

4. Multi-Lingual

Brief Overview

An app is by default designed to present information in a
specific language. To serve content in different languages,
the app developer would conventionally have to include a
language translation feature, and each language the app
supports can add complexity and time. However, this can be
expedited by example embodiments where a multi-lingual
feature can be easily integrated into app 112.

Details

An example embodiment for this can include a simple
way for the app owner to build their app and choose to
include additional languages using the marketplace add-on
tools that example embodiments offer. The app shell can
further make the user experience much easier by dynami-
cally detecting which part of the world the device is located
in and loading the local language translation service on the
fly.

5. Search

Brief Overview

An app that serves multiple pages of content can use the
marketplace tool or plugin to enhance itself to offer an
integrated search of all the content using a simple user
interface.

Details

An example embodiment for this can include a powerful
feature the app owner can choose to add to their app and
make their app content-searchable. Both in the crawler and
interceptor model of the design, as the content gets gathered
into the app and stored locally in the device, when user
searches for one or more words, the app can scan through the
locally stored pages and data and provide the results if
designed to include a search feature.

w

10

20

25

30

35

40

45

55

18

6. Offline Data Collection and Upload to Server when
Connection is Available Brief Overview

A website that serves in an interactive nature which
collects user information in a form type of page when
converted to an app can work in offline mode without data
connection and still deliver 100% of the functionality.

Details

An example embodiment for this can include a useful
feature the app owner can choose to add to their app and
make their app work in a disconnected or offline mode. Both
in the crawler and interceptor model of the design, any page
that collects data can detect if the device has connectivity or
not and when there is no connectivity, the app can store the
data in the local device storage. When the device regains
connectivity, it can post the data back to the server and
complete the transaction without any data or productivity
loss.

7. Integrate Device-Specific Features into the App

An example embodiment for the integration of device-
specific features into the native app can include a capability
for an app owner can choose to integrate device-specific
features such as Camera, Microphone, GPS etc. into the
native app 112. As an example, a Tailor business can use
their app to integrate Camera feature, and their customers
can use the app to take photos of their suit or a gown and
send it to the tailor all without leaving their app. The
conventional approach would require the user to use mul-
tiple applications including Camera and Email separately to
complete a transaction. However, with the integrated device
feature, the end user can complete the same task in a much
shorter time frame without leaving the app 112.

Other peripheral components of a mobile computing
device that may be accessed through the native app can
include a GPS receiver resident on the mobile computing
device, a microphone resident on the mobile computing
device, a Bluetooth component resident on the mobile
computing device, a near field communication (NFC) com-
ponent resident on the mobile computing device, a biometric
sensor resident on the mobile computing device, an accel-
erometer resident on the mobile computing device, a com-
pass resident on the mobile computing device, an altimeter
resident on the mobile computing device, and an encryption
or decryption circuit resident on the mobile computing
device.

8. Other Device Support

The existing Web Foundry and App Foundry can be
extended to support other platforms including BlackBerry or
Windows by a practitioner adding platform-specific librar-
ies.

The embodiments disclosed herein were chosen and
described in order to best explain the principles of the
invention and its practical application to thereby enable
others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to
the particular use contemplated. As various modifications
could be made in the constructions and methods herein
described and illustrated without departing from the scope of
the invention, it is intended that all matter contained in the
foregoing description or shown in the accompanying draw-
ings shall be interpreted as illustrative rather than limiting.

What is claimed is:

1. A method comprising:

a processor automatically converting a website into a
native app, wherein the website comprises a plurality of
content components and a plurality of links to the
content components, wherein the automatically con-
verting step comprises:



US 9,448,776 B1

19

a crawler parsing the website to extract (i) a plurality of
the content components of the website and (ii) a
plurality of the links of the website;

the processor writing a plurality of the extracted con-
tent components into a memory as a plurality of files
to be locally hosted by the native app;

the processor remapping a plurality of the extracted
links so that they link to the locally hosted files rather
than the website content components;

the processor generating a manifest data structure for
the website to be converted based on the remapped
links;

the processor accessing a native app shell data structure
in a memory;

the processor compiling the native app from the native
app shell data structure, the manifest data structure,
and the files to be locally hosted by the native app.

2. The method of claim 1 wherein the native app shell data
structure comprises a plurality of instructions for execution
by a processor of a mobile computing device, wherein the
instructions are configured to cause a mobile computing
device that executes the native app to:

check the website for changes in the content components

or links of the website; and

in response to detecting a change in the content compo-

nents or links of the website, update the native app to

reflect the detected change.

3. The method of claim 1 wherein the native app shell data
structure comprises a plurality of instructions for execution
by a processor of a mobile computing device, wherein the
instructions are configured to cause a mobile computing
device that executes the native app to:

check a web service for any updates to the website; and

in response to the web service indicating there is an

update to the website, receive from the web service an
update to the native app corresponding to the update to
the website.

4. The method of claim 1 wherein the content components
of the website comprise a plurality of static content com-
ponents and at least one dynamic content component;

wherein the writing step comprises the processor writing

the static content components into a memory as a

plurality of files to be locally hosted by the native app;

wherein the remapping step comprises the processor
remapping the links to the static content components so
that they link to the locally hosted files rather than the
website content components; and

wherein the native app shell data structure comprises a

plurality of instructions for execution by a processor of
a mobile computing device, wherein the instructions
are configured to cause a mobile computing device that
executes the native app to respond to a selection via the
native app of a link to the at least one dynamic content
component by sending a request for the dynamic con-
tent component to the website so that the request for the
at least one dynamic content component can be served
from the website for presentation to a user of the mobile
computing device via the native app.

5. The method of claim 1 wherein the website comprises
a plurality of content components and a plurality of links to
the content components, and wherein the manifest data
structure comprises a list of files corresponding to the
content components and a mapping of links for the listed
files.

6. The method of claim 1 wherein the native app is an
Android native app.

10

15

25

30

35

40

45

65

20

7. The method of claim 1 wherein the native app is an i0S
native app.

8. The method of claim 1 further comprising:

the processor receiving a specification of the website as an
input; and

the processor performing the automatically converting
step in response to the received input.

9. The method of claim 1 wherein the native app shell data
structure comprises a plurality of instructions for execution
by a processor of a mobile computing device, wherein the
instructions are configured to interface the native app with a
peripheral component of the mobile computing device to
provide a function for a user of the native app.

10. The method of claim 9 wherein the peripheral com-
ponent comprises at least one member of the group consist-
ing of a camera resident on the mobile computing device, a
push notification component resident on the mobile com-
puting device, a GPS receiver resident on the mobile com-
puting device, a microphone resident on the mobile com-
puting device, a Bluetooth component resident on the
mobile computing device, a near field communication
(NFC) component resident on the mobile computing device,
a biometric sensor resident on the mobile computing device,
an accelerometer resident on the mobile computing device,
a compass resident on the mobile computing device, an
altimeter resident on the mobile computing device, and an
encryption or decryption circuit resident on the mobile
computing device.

11. The method of claim 1 further comprising:

providing a series of GUIs through which a user specifies
the website to be converted and metadata for the native
app to be generated, and wherein the automatically
converting step is performed in response to inputs
received through the GUTIs.

12. A method comprising:

a processor automatically converting a website into a
native app, wherein the website comprises a plurality of
content components and a plurality of links to the
content components, wherein the automatically con-
verting step comprises:
the processor generating a manifest data structure for

the website to be converted;

the processor accessing a native app shell data structure

in a memory, wherein the native app shell data

structure comprises a plurality of instructions for

execution by a processor of a mobile computing

device, wherein the instructions are configured to

cause a mobile computing device that executes the

native app to:

access the website to present a plurality of the
content components and a plurality of the links to
the content components to a user of the mobile
computing device via a user interface of the
mobile computing device;

locally cache the presented content components on
the mobile computing device independently of
any cache configuration specifications that are
included within the content components of the
website; and

intercept selections of the presented links so that the
native app can serve a request corresponding to
the intercepted link from the local cache if the
content component corresponding to the inter-
cepted link is present in the local cache, and if the
request is not to be served from the local cache,
the native app causes the mobile computing device



US 9,448,776 B1

21

to send a request for the content component cor-
responding to the intercepted link to the website;
and
the processor compiling the native app from the native
app shell data structure and the manifest data struc-
ture.

13. The method of claim 12 wherein the native app is an
Android native app.

14. The method of claim 12 wherein the native app is an
i0S native app.

15. The method of claim 12 further comprising:

the processor receiving a specification of the website as an

input; and

the processor performing the automatically converting

step in response to the received input.

16. The method of claim 12 wherein the native app shell
data structure comprises a plurality of instructions for execu-
tion by a processor of a mobile computing device, wherein
the instructions are configured to interface the native app
with a peripheral component of the mobile computing
device to provide a function for a user of the native app.

17. The method of claim 16 wherein the peripheral
component comprises at least one member of the group
consisting of a camera resident on the mobile computing
device, a push notification component resident on the mobile
computing device, a GPS receiver resident on the mobile
computing device, a microphone resident on the mobile
computing device, a Bluetooth component resident on the
mobile computing device, a near field communication
(NFC) component resident on the mobile computing device,
a biometric sensor resident on the mobile computing device,
an accelerometer resident on the mobile computing device,
a compass resident on the mobile computing device, an
altimeter resident on the mobile computing device, and an
encryption or decryption circuit resident on the mobile
computing device.

18. The method of claim 12 wherein the manifest data
structure comprises a specification of a URL for the website.

19. The method of claim 12 further comprising:

providing a series of GUIs through which a user specifies

the website to be converted and metadata for the native
app to be generated, and wherein the automatically
converting step is performed in response to inputs
received through the GUTIs.

20. A computer program product for converting a website
into a native app, wherein the website comprises a plurality
of content components and a plurality of links to the content
components, the computer program product comprising:

a plurality of processor-executable instructions resident

on a non-transitory computer-readable storage medium,

and wherein the instructions are configured to cause a

computer, upon execution of the instructions, to:

crawl the website to parse the website and extract (i) a
plurality of the content components of the website
and (ii) a plurality of the links of the website;

write a plurality of the extracted content components
into a memory as a plurality of files to be locally
hosted by the native app;

remap a plurality of the extracted links so that they link
to the locally hosted files rather than the website
content components;

generate a manifest data structure for the website based
on the remapped links;

access a native app shell data structure in a memory,
and

compile the native app from the native shell data
structure, the manifest data structure, and the files to

10

15

20

25

30

35

40

45

50

55

60

65

22

be locally hosted by the native app to thereby auto-
matically convert the website into the native app.

21. The computer program product of claim 20 wherein
the native app shell data structure comprises a plurality of
instructions for execution by a processor of a mobile com-
puting device, wherein the native app shell data structure
instructions are configured to cause a mobile computing
device that executes the native app to:

check the website for changes in the content components

or links of the website; and

in response to detecting a change in the content compo-

nents or links of the website, update the native app to
reflect the detected change.

22. The computer program product of claim 20 wherein
the native app shell data structure comprises a plurality of
instructions for execution by a processor of a mobile com-
puting device, wherein the native app shell data structure
instructions are configured to cause a mobile computing
device that executes the native app to:

check a web service for any updates to the website; and

in response to the web service indicating there is an

update to the website, receive from the web service an
update to the native app corresponding to the update to
the website.

23. The computer program product of claim 20 wherein
the content components of the website comprise a plurality
of static content components and at least one dynamic
content component;

wherein the write instructions are configured to cause a

computer, upon execution of the write instructions, to
write the static content components into a memory as a
plurality of files to be locally hosted by the native app;

wherein the remap instructions are configured to cause a

computer, upon execution of the write instructions, to
remap the links to the static content components so that
they link to the locally hosted files rather than the
website content components; and

wherein the native app shell data structure comprises a

plurality of instructions for execution by a processor of
a mobile computing device, wherein the native app
shell data structure instructions are configured to cause
a mobile computing device that executes the native app
to respond to a selection via the native app of a link to
the at least one dynamic content component by sending
a request for the dynamic content component to the
website so that the request for the at least one dynamic
content component can be served from the website for
presentation to a user of the mobile computing device
via the native app.

24. The computer program product of claim 20 wherein
the native app shell data structure comprises a plurality of
instructions for execution by a processor of a mobile com-
puting device, wherein the native app shell data structure
instructions are configured to interface the native app with a
peripheral component of the mobile computing device to
provide a function for a user of the native app, wherein the
peripheral component comprises at least one member of the
group consisting of a camera resident on the mobile com-
puting device, a push notification component resident on the
mobile computing device, a GPS receiver resident on the
mobile computing device, a microphone resident on the
mobile computing device, a Bluetooth component resident
on the mobile computing device, a near field communication
(NFC) component resident on the mobile computing device,
a biometric sensor resident on the mobile computing device,
an accelerometer resident on the mobile computing device,
a compass resident on the mobile computing device, an



US 9,448,776 B1

23

altimeter resident on the mobile computing device, and an
encryption or decryption circuit resident on the mobile
computing device.

25. A computer program product for converting a website
into a native app, wherein the website comprises a plurality
of content components and a plurality of links to the content
components, the computer program product comprising:

a plurality of processor-executable instructions resident
on a non-transitory computer-readable storage medium,
the instructions configured to cause a computer, upon
execution of the instructions, to:
generate a manifest data structure for a website to be

converted into a native app;

access a native app shell data structure in a memory,

wherein the native app shell data structure comprises

a plurality of instructions for execution by a proces-

sor of a mobile computing device, wherein the native

app shell data structure instructions are configured to

cause a mobile computing device that executes the

native app to:

access the website to present a plurality of the
content components and a plurality of the links to
the content components to a user of the mobile
computing device via a user interface of the
mobile computing device;

locally cache the presented content components on
the mobile computing device independently of
any cache configuration specifications that are
included within the content components of the
website; and

intercept selections of the presented links so that the
native app can serve a request corresponding to
the intercepted link from the local cache if the
content component corresponding to the inter-
cepted link is present in the local cache, and if the
request is not to be served from the local cache,
the native app causes the mobile computing device

20

25

30

24

to send a request for the content component cor-
responding to the intercepted link to the website;
and
compile the native app from the native app shell data
structure and the manifest data structure to thereby
automatically convert the website into the native
app.

26. The computer program product of claim 25 wherein
the native app is an Android native app.

27. The computer program product of claim 25 wherein
the native app is an iOS native app.

28. The computer program product of claim 25 wherein
the native app shell data structure instructions are further
configured to cause a mobile computing device that executes
the native app to interface the native app with a peripheral
component of the mobile computing device to provide a
function for a user of the native app.

29. The computer program product of claim 28 wherein
the peripheral component comprises at least one member of
the group consisting of a camera resident on the mobile
computing device, a push notification component resident
on the mobile computing device, a GPS receiver resident on
the mobile computing device, a microphone resident on the
mobile computing device, a Bluetooth component resident
on the mobile computing device, a near field communication
(NFC) component resident on the mobile computing device,
a biometric sensor resident on the mobile computing device,
an accelerometer resident on the mobile computing device,
a compass resident on the mobile computing device, an
altimeter resident on the mobile computing device, and an
encryption or decryption circuit resident on the mobile
computing device.

30. The computer program product of claim 25 wherein
the manifest data structure comprises a specification of a
URL for the website.



